Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity.

نویسندگان

  • P Payton
  • R Webb
  • D Kornyeyev
  • R Allen
  • A S Holaday
چکیده

This study examined the effect of increasing chloroplastic superoxide dismutase (SOD), ascorbate peroxidase (APX), or glutathione reductase (GR) activity via plant transformation of cotton on the initial recovery of photosynthesis following exposures to 10 degrees C and high photon flux density (PFD). Growing wild-type or non-expressing segregate plants (controls) and transformants at two PFDs (600 micromol m(-2) s(-1) and full sun) resulted in a range of total antioxidant enzyme activities. Total SOD activities above that for control leaves grown in full sun did not substantially improve the recoveries of CO(2)-saturated photosynthesis, especially for stress treatments lasting more than 1 h, while elevated APX or GR activity did improve recoveries after 1-3 h of the chilling treatment. No synergistic effects were noted when the activities of more than one antioxidant enzyme were elevated in transgenic hybrids. Although these results suggest that the protection of photosynthesis can be realized by reducing either superoxide or H(2)O(2) levels, thereby reducing the possibility of hydroxyl radical formation, the situation is complicated, since elevated APX or GR activity can improve recoveries even when additional SOD activity has no effect. In conclusion, to enhance the protection of photosynthesis using stroma-targeted antioxidant enzymes, enhancing metabolism associated with H(2)O(2) is more effective than enhancing the capacity for superoxide scavenging. Although small, the improvement in the protection of photosynthetic capacity may be sufficient to improve cotton yield in temperate regions with large diurnal temperature fluctuations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of chilling and high light stress on phenolic metabolism and antioxidant activity of Aloe vera L. plants

High light (HL) can limit plant photosynthetic activity, growth and productivity. The HL effect was more pronounced in plants grown at low temperature. In order to determine the effects of chilling stress (4 0C) and light intensities (450 and 850 µmol m-2 s-1) on antioxidant defense system and  phenolic metabolism of Aloe vera L., an experiment was  conducted in a randomized complete block desi...

متن کامل

Effect of Light Intensity and UV Radiation on Morpho-physiological Charactrestics and Biomass of Rose-Scented Geranium (Pelargonium graveolens L'Heritier)

Rose-scented geranium (Pelargonium graveolens Lchr('39')Heritier) is an important ornamental plant that is cultivated worldwide due to its valuable medicinal properties. The present research was conducted to evaluate the effect of light intensity and UV radiation on the morphological and physiological characteristics of rose-scented geranium in 2020. The experiment was performed as split plots ...

متن کامل

Activation of NADP-Malate Dehydrogenase, Pyruvate,Pi Dikinase, and Fructose 1,6-Bisphosphatase in Relation to Photosynthetic Rate in Maize.

The activity and extent of light activation of three photosynthetic enzymes, pyruvate,Pi dikinase, NADP-malate dehydrogenase (NADP-MDH), and fructose 1,6-bisphosphatase (FBPase), were examined in maize (Zea mays var Royal Crest) leaves relative to the rate of photosynthesis during induction and under varying light intensities. There was a strong light activation of NADP-MDH and pyruvate,Pi diki...

متن کامل

Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed ...

متن کامل

Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions.

In some studies, tissues from plants that have been genetically transformed to overproduce antioxidant enzymes sustain less damage when abruptly exposed to short-term chilling in the laboratory. However, few studies have examined the performance of transgenic plants during longer-term growth under chilling conditions. We compared growth of transgenic cotton that overproduces glutathione reducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 52 365  شماره 

صفحات  -

تاریخ انتشار 2001